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I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurological disorder
that adversely affects a person’s capability to communicate
and do social interactions. The current clinical standards
for diagnosis of ASD include developmental screening and
comprehensive diagnostic evaluation. However, these clinical
methods cannot effectively diagnose ASD till about 2 years of
age [1], due to which many autistic children are unable to get
the requisite support and resources early on.

In recent years, the research into the effectiveness of ma-
chine learning for ASD classification has been growing. In this
research project, we investigate this novel approach of classi-
fication of ASD by applying five supervised machine learning
algorithms to fMRI data of ASD subjects and control subjects.
The data used for this research is a subset of the Autism
Brain Imaging Data Exchange (ABIDE data-set), which has
fMRI data from about 500 ASD and control subjects each[2].
In this report, we outline our methodology for preprocessing
data and for generating different sets of features from the
fMRI time-series data. We then describe our methodology for
running various machine learning models. Then we discuss
and compare the accuracy of the different Machine Learning
models used on the fMRI with one another and with the
accuracy obtained from using the phenotypic data for the
models. Finally, we summarize which feature-sets worked the
best for our models and the top features for classification of
ASD we found.

II. METHODOLOGY

A. Pre-processing Data and Generating Features

Two subsets of ABIDE were used for this research:
1) Phenotypic Data including AGE, SEX, HANDEDNESS,

FIQ, VIQ, PIQ of ASD and control subjects.
2) fMRI scans of ASD and control subjects.

For preprocessing the phenotypic data, alphabetical features
such as ”handedness” were converted to numerical features
and data then normalized.

Preprocessing the fMRI images took multiple steps. First,
the correct format for the fMRI data needed to be selected
among all possible preprocessing steps. In this study, the
Data Processing Assistant for Resting-State fMRI (DPARSF)
pipeline was chosen based on the methods of Bi et .al [3][4].

Next, the format of the data was chosen as fMRI represented in
the Automated Anatomical Labeling (AAL) brain atlas. AAL
divides the brain into 116 macroscopic brain structure and
creates a vector time-series of the brain activity for the duration
of the fMRI [5]. However, due to the variety of configurations
used, each time-series has a different length which makes
it difficult to compare time-series directly. Additionally, the
time-series does not illuminate how different regions of the
brain interact with one another, making it difficult to use as a
feature set. To account for this issue, the Pearson correlation
coefficient was computed for every pair of the 116 AAL brain
structures, resulting in (116× 115/2) = 6670 features which
are independent of time. Then from this data, all samples that
resulted in a floating point error during the computation were
thrown out of the correlation data set.

The pairwise Pearson correlation coefficients can also be
used to generate measures that stem from graph theory, better
characterizing the brain networks integration and segregation,
with approximately 7,000 additional generated features. In
order to generate these graph measures, one first needs to
convert the correlation coefficients into an adjacency matrix of
the absolute value of each correlation. Then all values below
a fixed constant are thresholded to zero. In this case a value
of 0.25 was chosen based on the work of Bi et. al [4]. This
results in an adjacency matrix which can be used to compute
various graph measures. For the computation of these graph
measures a Python library, bctpy, was used, which mirrors
the functionality of the Brain Connectivity Toolbox written in
Matlab [6][7].

The motivations behind using graph measures as a fea-
ture set come from an article that explores classification of
Alzheimer’s using machine learning [8]. Among the graph
measures there are three types of measurement: functional
segregation, functional integration, and local nodal measures.
In functional segregation the weighted clustering coefficient
and local efficiency were used. For functional integration the
weighted distances and characteristic path length were used.
And with local nodal measures only the node degree was
chosen. These decisions form a subset of the decisions made
by Khazaee et. al with the inclusion of the distance matrix
values as an additional metric from the methods of Bi et .al
[8][4].

Additionally, there exists a nuance when computing mea-



surements related to functional integration. When computing
the graph distance between entries in the adjacency matrix,
it is natural for those with lower value separations to be
considered “closer” to one another. However, when using the
Pearson correlation coefficient, nodes which are more closely
related have a larger correlation coefficient. For this reason, the
correlation adjacency matrix needs to be “inverted” to match
the expectations of the functional integration measurement.
To do so, all values k in the adjacency matrix are transformed
according the following transformation.

k −→

{
∞ if k = 0

1− k if k > 0

Through this transformation, nodes with higher correlation
are considered “closer” to one another, and those with no
correlation are infinitely far from one another. In combination
with the thresholding operation performed in the previous
steps, the resultant matrix will contain many values of infinity,
hence making the shortest distance between nodes a nontrivial
calculation that is performed by bctpy [6].

Additionally, another, much simpler, preprocessing was
done by computing the mean intensity of each AAL region
and generating another feature vector with 116 elements.

B. Analyzing Data with Machine Learning Algorithms

For running machine learning algorithms, the preprocessed
data with Pearson correlation coefficient, graph measures, and
intensity averages used as features was divided in a 80:20
ratio for training and test. For each feature set combination
the feature values were normalized to a range of -1 to 1 to
account for differences in the range of measurements between
the different features. We chose five supervised machine
learning algorithms for training on each of the feature-set:
Support Vector Machines (Linear and RBF Kernel), Adaboost
(Decision Tree Base Classifier), Neural Networks (Multi-layer
Perceptron Classifier), Random Forests, K-Nearest Neighbors.
These algorithms were chosen since each of these has a very
distinct approach of classification. We used Python’s machine
learning library, sklearn, for implementing these algorithms.

For tuning the hyperparameters, a 3-fold cross validation
with a grid search of hyperparameters was performed. Ac-
curacy, area under ROC-curve, Precision and Recall were
examined to compare the different models.

Of all the methods SVM’s were explored in more depth
than the others. In addition to the methods used above, 5-
fold cross validation was tested as another method of cross
validation. Another component of SVM’s that was tuned
was the kernel. When training, a linear, radial basis function
(RBF), and sigmoid kernel were tested with SVM’s to compare
results. Furthermore, the number of features used in training
was added as an additional hyperparameter when training
SVM’s. To tune this hyperparamter, the top K features were
chosen in each of the training sets during cross validation, and
subsequently the value of K that achieved the best validation
accuracy was chosen for final testing.

In addition, feature importance was computed for each
of the features after training the model. To do so feature
importance was calculated by running Random Forest 100
times and examining the top 10 features on each iteration.
In the case of correlation coefficients, this could be further
decomposed into determining the importance of each AAL
region by taking into account which regions the important
connections are between.

III. RESULTS AND DISCUSSION

With three types of feature sets (Pearson correlation co-
efficients, mean intensities, and graph measures), all possible
combinations were attempted when training the models. Of all
the combinations, the Pearson correlation coefficients yielded
the highest accuracies when used without any of the other
features.

Classifying using the 5 methods described above gave rela-
tively similar accuracies and AUROCs for each method, with
the highest accuracy attained being 66.08% from Adaboost
and the highest AUROC being 0.70 for Neural Networks.
Classifications of all accuracies can be found in Figure 1. The
ROC curves for the top three models can be found in Figures
2 and 3.

With the additional tests performed on SVM’s it was found
that Linear and RBF kernels produced the best accuracy at
approximately 65%, with the linear kernel achieving a slightly
higher AUROC at 0.68 rather than 0.67. Additionally, 5-fold
cross validation tended to perform better than 3-fold cross
validation, potentially implying that it allowed the model
the better generalize to the data. Lastly, approximately 800
features is where linear SVM’s attained the best accuracy,
showing that not all correlation coefficients are necessary for
an effective classification.

It is worth noting that 66% is similar to accuracies achieved
in other studies using machine learning techniques on the
ABIDE dataset, indicating that these results are in line with
the current state of the art [9][10].

For the subset of phenotypic data we analyzed, simple
Decision Trees had the best accuracy of 62%. However, due
to the structure of the ABIDE dataset, not all samples had the
phenotypic features used for training, so the sample size was
significantly smaller for these tests.

The most important features calculated from the Random
Forest model were the Pearson correlations between the left
Thalamus, right medial frontal gyrus, left gyrus Rectus and
Left middle temporal gyrus and other AAL regions shown in
figure 4. Of the important regions, connections with the left
Thalamus consistently attained the highest feature importance
of all 116 AAL regions. This result coincides with other
research in the field that claims there may be a correlation
between impaired thalamacortical connectivity and ASD [11].

IV. CONCLUSION

The accuracy results show that there is promise in pursuing
this research further. However, due to relatively low accuracy
scores, machine learning techniques will most likely not



replace current clinical diagnostic methods for individuals with
ASD anytime soon.

One question for further exploration is whether increasing
the number of samples would help the models achieve a higher
accuracy. With only 1000 individuals in the ABIDE dataset,
it is difficult to conclude that the samples are completely
indicative of the wider population.

Additionally, this research could be used to better explore
and discover some of the neuroanatomical causes or results of
having ASD. With the connection between the left Thalamus
and ASD being found in this project’s models and the wider
medical community, machine learning models could help
illuminate other possible brain regions that are correlated with
ASD or confirm proposed correlations from other studies.

Finally, the lower accuracies achieved when classifying
autism in comparison to other disorders may be indicative
of the wide variety of individuals who fall under the cate-
gorization of ASD. Since ASD is a “spectrum” disorder, there
are a large array of different phenotypic characteristics that
may classify an individual as having ASD, hence this wide
range of diagnosis may make it harder to use machine learning
techniques for this problem. An interesting study to assert this
claim would be to include only individuals with severe cases
of ASD in the dataset and see if better classification accuracies
could be achieved by the resultant models.

Fig. 1. Accuracies of the five machine learning models on Pearson Correlation
of AAL regions

Fig. 2. ROC curves of Adaboost and Neural Net models



Fig. 3. ROC curves of SVM models with three kernel types

Fig. 4. The brain regions with the highest frequency of important connection
features for ASD classification
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